Trends in Higher Education 2017

It seems like here in the U.S., higher education is being attacked for being too liberal or not liberal enough or not providing enough instruction in technical, hands-on skills. The new presidential administration will have some influence on the debate through what areas of education it funds. I believe that colleges and universities need to clearly articulate their value proposition. How does our school add value to students? What do we offer that differentiates us from our competitors? How can we better serve our current and prospective students? These are the same questions a business poses when trying to grow and thrive. In this blog I will highlight trends I think will have an impact on how we answer those questions.

Personalization

A 2015 article in EdSurge News defines personalized learning as “technology-assisted differentiated instruction.” The article made a valid point that we are in the business of educating real people and not just a generalization of students. This means tailoring curriculum to current students and their needs. Do you cater to first time students or returning students that have several years of industry experience? It does not make sense to apply the same model to all students. Personalization is particularly difficult when you have a mix of new and returning students, but technology makes it possible to create multiple tracks of the same course so that the outcomes are the same but the paths vary to suit the needs of the students.

High Velocity Learning

Businesses are increasingly asking employees to be more flexible and move faster. The United States Navy recently introduced what they call high velocity learning which means being nimble, flexible and faster at processing change. Educators should adopt the same mindset. This may mean an accelerated program for those who have already proven competencies or modifying the way we test for competencies. This goes right along with personalization and is a hot topic as tuition continues to rise and the length of time spent in college is extended. It is important to review our curriculum to make sure it is relevant, necessary, and promotes our value proposition.

Thoughts

I think in the future higher education will need to be more responsive and flexible and technology will be used to create dynamic curriculum that caters to individual needs. Just as important is an honest review of offered courses to ensure they still prepare students for the future. These are just some of the ways that educators can serve students. Do you have other ideas that will align education offerings with current needs? Let me know your thoughts.

Author Kelly BrownAbout Kelly Brown

Kelly Brown is an IT professional and assistant professor of practice for the UO Applied Information Management Master’s Degree Program. He writes about IT and business topics that keep him up at night.

Print Friendly

The New Face of Retail Delivery

The Future of Transportation

I recently ran across an interesting collection of YouTube videos called the Dead Mall Series. This series is filmed and narrated by Dan Bell and has nothing to do with suburban zombies but highlights our changing shopping habits. Bell tours and films shopping malls that have an 80 to 90% vacancy rate and then dubs in a personal narrative about his experience. It is a stark reminder that our buying habits have changed significantly since the 1960s, partly due to the popularity of online shopping. In watching these videos, I think not only about our changing retail experience but also about how the entire supply chain has evolved. Instead of driving to suburban shopping malls supplied by large trucks, we place orders online and our purchases are delivered to our doors by UPS or FedEx or USPS. While the video series shows declining retail shopping, this blog examines how transportation is changing to keep up with our new demands.

Trains

In the U.S. trains are used primarily for transporting industrial products such as lumber and chemicals, but are seldom used for retail products. Part of the reason is that we do not have an extensive infrastructure of stations, unlike in Europe. In Europe, the German Aerospace Center is working on next generation trains for both passengers and freight. They are proposing a train system that is more flexible and can get closer to filling retail orders. There the train is the backbone of retail delivery not the large trucks we see on our highways. In the U.S., the nearest train station may be 50 or 100 miles from the customer.

Trucks

Tesla CEO Elon Musk recently revealed that Tesla plans to unveil an electric semi truck in September 2017. The company previously announced it is working on vehicles other than autos. It makes sense Tesla would go after this market, but I think they will need to somehow extend the battery range in order to make it viable. The Model S runs 265 to 300 miles per charge. Large trucks travel constantly with two drivers and can go approximately 1000 miles between stops. Batteries are generally heavier than fuel for the amount of energy output, so electric planes don’t make sense yet and electric semis may need some newer technologies to make them mainstream.

Now, if you could outfit an electric semi truck with autonomous or semi-autonomous capability then you would have something. An autonomous truck made a beer delivery from Ft. Collins to Colorado Springs, CO in October 2016,  so it has been done. This could be the next wave of truck delivery.

Drones

Amazon launched Prime Air in December 2016 and completed the first two deliveries via drone. An Amazon video shows a small package that took 13 minutes from purchase to delivery. Amazon plans on increasing the customer count eligible for this service to dozens and then hundreds. A customer would have to live close to a fulfillment center in order to get the prime service. Apparently, next day or even same day delivery is no longer fast enough.

Thoughts

There are many pieces that make up retail sales and delivery, and companies are using technology to efficiently move goods to customers. Whether in the future we see a sky full of drones or a road full of electric autonomous trucks is anyone’s guess. Shopping options are definitely changing and the supply chain will have to change as well in order to keep up. What do you think the future holds? Let me know your thoughts.

Author Kelly BrownAbout Kelly Brown

Kelly Brown is an IT professional and assistant professor of practice for the UO Applied Information Management Master’s Degree Program. He writes about IT and business topics that keep him up at night.

Print Friendly

Technology Assisted Parenting

I have been thinking about all of the conveniences and technologies that help with—and sometimes hinder—the raising of children. Do they make it easier to successfully and safely raise kids? I grew up with television, long before personal computers and modern electronic communications. I knew only one person with a car phone, but cell phones and smart devices were still off in the future. Our favorite technology was the bicycle, which gave us all of the freedom we needed. There was one computer in our town and it was housed in a large room at the local university. Now I have six computers just in my house.

We raised our son in the computer age and one of our hardest parenting tasks was keeping him away from technology so that he could do other things, like homework. The computer was more of a distraction than a tool in his young life. He and I built our own personal computer, which was a source of pride for him and helped fuel his love for all things technical. He now helps me with new applications, instead of the other way around.

This week I want to look at a couple of newer technologies I think can help parents raise children.

Newborns and Infants

Ford Motor Company created a prototype crib that simulates a car ride, right down to the sound and motion and even the passing street lights of a real car ride. The crib is internet connected so you can travel the baby’s favorite route, in your Ford of course, and record the movement and sound and then upload that to the crib. Ford built only one prototype, which will be given away in a contest, but who knows if it will catch on.

Homework Helpers

There is sometimes frustration around homework, both for students and parents. In our house, homework was sometimes completed but not turned in, which drove me crazy. Many classrooms now use learning management systems like Canvas or Blackboard that are accessible by both students and parents via computer or mobile interface. This may seem like spying but it greatly reduces surprises at the end of the term and hopefully promotes discipline.

There are several apps to help with homework. I am intrigued by the iOS Socratic app, which combines computer vision and artificial intelligence to help with problems in math, chemistry, science, and other areas. The app allows a student to take a photo of a math problem, for example, and then guides them to further material that will help them answer the question. The Android app is coming soon.

Becoming Responsible Adults

Circling back to the car theme from the beginning of this blog, several auto manufacturers are adding safe teen driving and monitoring features into their new cars. Chevrolet has introduced the Teen Driver System that allows a parent to limit functionality of the car and monitor the activities of the automobile. This function is tied to the teen’s key fob so that a parent driving the same car would not have the same limits. Devices such as Zubie work with older model cars and monitor not only teen driving but all aspects of the vehicle such as upcoming maintenance and fuel and oil levels.

Thoughts

My own son is grown now but I am glad there are technologies available to assist parents. Some innovations target safety, others convenience, and still others enhance learning. Do you know of other developments that help in raising kids? Let me know your thoughts.

Author Kelly BrownAbout Kelly Brown

Kelly Brown is an IT professional and assistant professor of practice for the UO Applied Information Management Master’s Degree Program. He writes about IT and business topics that keep him up at night.

Print Friendly

Next-Generation Battery Technology

I have written about a range of emerging technologies. While the devices and apps I’ve featured were designed to accomplish very different things, they do have one thing in common—they all need power. In some cases, power limitations are holding us back from achieving even greater performance and options. What’s happening in the world of battery technology? It would be great if we could charge our devices in under a minute and the charge would last for two weeks. It would also be great if our electric vehicles could travel more than 500 miles on a single charge and recharge in only 5 minutes. How close are we to that? Read on.

Basic Batteries

A battery is made up of a positive and negative electrode with an electrolyte that allows for the flow of ions between the two poles. It is possible to make a basic battery out of a copper penny (negative anode), a galvanized nail (positive cathode) and a potato or a lemon (electrolyte). Energy is created as electrons flow from the anode to the cathode through the medium. This basic technology has existed since the first electric battery was invented in 1799. The only problem was that no one had yet thought of electric cars (or cars at all for that matter) or drones or handheld devices that need batteries we wish lasted longer. The requirements for the original battery were simple in contrast.

Battery Developments

Current battery technologies have settled around alkaline, used for household tools like flashlights; lithium-ion, used in cell phones, laptops, portable tools, and even electric vehicles; and lead-acid batteries, which power the starters on gas and diesel  vehicles. These all use chemicals like cobalt, lead, nickel, graphite, manganese, and aluminum that are available in limited supply on earth and can pollute the environment when disposed of. Tesla, for example, is betting on lithium-ion technology as it completes its gigafactory in Nevada. The company will produce batteries for their cars and to store energy for home solar collectors, among other uses. Tesla is betting that large-scale production and intensive research will allow to improve battery life and sustainably source or create components.

The next generation of batteries may include graphene, which was discovered in 2004. Graphene is a single-atomic layer of carbon atoms arranged in a hexagonal pattern. It is stronger than steel and diamonds and has the highest electrical and thermal conductivity ever recorded. Battery manufacturers are introducing graphene-enhanced batteries, but a full graphene battery is still in development. Companies, including Graphenano in Spain, are working to bring graphene batteries to market. One positive development is the availability of graphene filament from Graphene 3D Lab, which can be used in 3D printers (including home models) to print batteries. That could spawn a lot of new applications for the technology.

There is also active research in nanowires, which would store electrons and could be recharged more times than a traditional battery. Material scientists are searching for a substrate suitable for these fragile wires so that they can be used in a commercial product.

Thoughts

Battery technology research is marching ahead but demand for more efficient battery materials is adding pressure to speed the pace of development. Cars, electronic devices and sensors all require power that can be stored and used at the push of a button. I will be keeping my eye on new battery technology as we try to find the right blend of sustainable materials and modern efficient manufacturing.

Author Kelly BrownAbout Kelly Brown

Kelly Brown is an IT professional and assistant professor of practice for the UO Applied Information Management Master’s Degree Program. He writes about IT and business topics that keep him up at night.

Print Friendly

The Technology of Sleep

A woman sleeps clutching a smart phone.I have written before about what I call the examined or quantified life. We try to measure aspects of our life such as heart rate or calorie consumption or number of steps taken. This is often part of an attempt to adjust various aspects of our life to bring more control and meaning to our existence. One of the areas that we may not focus on enough is sleep. If done right it should represent a third of our 24 hour day. This blog post highlights various ideas, technologies, and methods to help quantify, and hopefully improve, sleep.

A Measure of Success

It used to be that lack of sleep was a positive sign that we were too busy and important to take such a long break. A recent New York Times article titled “Sleep Is the New Status Symbol” suggests just the opposite is in vogue. The author cites studies that show lost productivity and health crises attributed to lack of sleep. Now, it is more desirable and advantageous to get enough sleep, whether it be in one block or augmented with a short nap during the day. Quality sleep is the new gold.

There have been studies and articles suggesting smartphones and other devices are disrupting our sleep through bright light and mental stimulation. But there are also devices and apps for measuring sleep quality and duration. Apple’s iOS 10 has a sleep timer built right into the clock that reminds you when it is time to go to bed and then gently wakes you. In addition, it tracks your sleep and makes that available to iOS Health for logging. Also available is the SleepCycle app for Apple devices and SleepBot for Android smartphones. These all encourage you to go to bed and wake up on time through an audible alarm and then track the time that your phone is motionless so that you can modify your patterns if necessary.

Sleep Aids

Pharmaceutical sleep aids sometimes cause addictions or even interrupt sleep that they are supposed to protect. However, there are new technologies that are promising to bring deep, uninterrupted rest. While light on details, the Dreem headband promises to bring a restorative sleep. Due out this summer, the device uses electroencephalogram (EEG) technology to monitor brain patterns and produce soothing sounds at just the right moments. Like the apps mentioned above and wearable devices, it also tracks your duration and quality of sleep.

The Thim device, previewed in the above-mentioned New York Times article, will also debut this summer. Thim trains you to get to sleep faster, thus leading to a better quality sleep. It does this by waking you every three minutes after you first fall asleep in the evening. This is intended to condition your body to go to sleep faster. Personally, I think it would drive me crazy but it may work for some. It also tracks your sleep duration and patterns.

Thoughts

There are some medical issues that prevent sleep and should be dealt with, but for those of us with overactive minds or poor scheduling habits, technology can help. Personally I can go to sleep in five minutes but my brain reengages about 3:00 a.m. and it is not always easy to get back to sleep. I follow all of the standard wisdom, but to no avail. Perhaps one of these monitors or trackers might be just the thing I need. I actually sleep better in a sleeping bag in the woods than in my own bed, which may say something about me.

Have you had success with a sleep app or wearable or other technology? How has it made a difference in your life? Please share your experiences so maybe the rest of us can learn better sleep practices from you.

Author Kelly BrownAbout Kelly Brown

Kelly Brown is an IT professional and assistant professor of practice for the UO Applied Information Management Master’s Degree Program. He writes about IT and business topics that keep him up at night.

Print Friendly

Powering the Internet of Things with Clean Energy

Image of the planet imbedded with an electrical socket and a cord plugged into it.Internet of Things (IoT) continues to grow as emerging technologies and devices are constantly being developed and added to the internet. I’ve looked at how information produced by IoT is communicated and considered how to process the data. But what powers all those devices and sensors? In some situations, such as agricultural technologies, extension cords are out of the question as is regularly changing batteries. In response, researchers are working to harvest energy to power these devices.

Mechanical Energy

A 2015 IEEE article highlighted three promising areas for harvesting energy—mechanical energy, heat, and electromagnetic emissions. In terms of mechanical energy, they highlighted a small conformable piezoelectric device developed at the University of Illinois to power a pacemaker from a heartbeat. The heart’s own contractions would power a device that helps keep itself beating regularly. This would eliminate the need to surgically replace batteries.

The article also highlighted a small device that harvests energy from the vibration of trains, created by Perpetuum. The harvester is installed near the wheels and captures energy from the travel motion to power sensors that can monitor wheel bearings and wheel travel on the rail. This is in production now and helps to prevent rail accidents by detecting problems early. The harvester has a 100 year life expectancy.

Heat

South Korea’s KAIST university has developed a thermoelectric generator that is embedded in glass fabric and generates power from body heat. This could power wearable devices or be embedded in the device itself, thus providing its own power source.

Here is what I am thinking: what if we can print these thermoelectric materials on our 3-D printers and create our own generators? I may be on to something. I probably create enough heat while riding my bicycle to power my smart phone and computer.

Electromagnetic Emissions

In Ayn Rand’s 1957 novel “Atlas Shrugged,” the hero invented a method for harvesting electrostatic energy from the atmosphere and eventually powered a small village. I suspect that we have been thinking about it even longer than that, but our efforts are still in their infancy. Researchers at the University of Waterloo have been working to improve collection antennas and hope to be able to capture emissions on a large scale. They are working on materials to more efficiently capture energy.

Thoughts

It is an exciting time for research in this area with breakthroughs in physics, material science, and microelectronics all converging on the singular problem of how to replace fossil fuels with clean energy capture. We have a lot of new devices coming that will need to be powered, hopefully with a sustainable energy source. Are we close to solving this mystery? Let me know your thoughts.

Author Kelly BrownAbout Kelly Brown

Kelly Brown is an IT professional and assistant professor of practice for the UO Applied Information Management Master’s Degree Program. He writes about IT and business topics that keep him up at night.

Print Friendly

Telecommuting vs. Colocation: Changing Attitudes and Trends

This week I would like to start a conversation about the merits of working remotely versus colocation. IBM announced in January that all North American marketing employees will be called into one of six offices around the country, thus ending remote work for that department. This follows other IBM departments that recently called in the troops. Yahoo’s Marissa Mayer made a similar move for all employees in 2013 and she was not the first to reverse the trend toward remote work.

My question is this: does colocation make sense in a global workforce, or does innovation flourish when workers are sitting shoulder to shoulder discussing the next breakthrough product or process?

History of Telework

As early as the 1600s, some people were acting as independent contractors by receiving raw materials and producing finished product, all from their home. This was most prevalent in fields such as ironwork or sewing. Often, members of the family would help. Thus was born what we know as the cottage industry and also the first remote workers.

In subsequent years, non-farming jobs moved primarily to cities where factories powered by a growing workforce turned out an array of goods. Offices soon followed, where knowledge workers specializing in accounting or marketing or programming worked. Having everyone together helped with communications and coordination of a large group of people.

With the oil crisis of the 1970s and high gas prices, employers and researchers started to look for ways to keep some employees at home and productive. Improved telecommunications and computing allowed more people to work from home or remote locations. The Clean Air Act of 1990 only accelerated the need to reduce commuting and increase telework. AT&T celebrated the first Telecommuting Day on September 20, 1994 which is befitting of the telecommunication giant. Telework picked up in the 1990s and grew, but by the time Yahoo called back their remote employees in 2013 the pendulum had begun to shift the other way.

A Case for Colocation

The pitch for everyone located in the same office or a limited series of offices has mostly to do with innovation. The argument is that teams can be more innovative when everyone can physically see their coworkers and spontaneous conversations ensue. There is some evidence that this is true. Google encourages employees to come into the office through perks such as transportation via the GBus and free meals on campus. They believe that dining with fellow Googlers will spur innovation. They can meet with other teams around the country and the globe via teleconferencing when necessary, thus promoting their green agenda.

The Argument

I have telecommuted in the past when working with global teams. I had days that opened with phone calls to Europe at 6:00 a.m. and ended with 6:00 p.m. calls to Asia. It was convenient and efficient to work from home. It was also much more efficient than traveling around the globe, although there were times when that was necessary.

I can see the argument for having teams in a central office, but the transition may mean moving families or leaving jobs if a move is not feasible. It also means more commuters clogging roads and more time spent in traffic. Perhaps the self-driving car equipped with wi-fi will be the answer. In the meantime, I think organizations should proceed with caution as they call workers back into the office. They may be trading efficiency for innovation.

Thoughts

Let me know your thoughts on this subject. Are you a telecommuter, and does it work for you? Do you find that you work less or more than if you commuted to an office every day? Do you miss the personal interaction with a physical work team? Perhaps together we can come up with the ideal solution.

Author Kelly BrownAbout Kelly Brown

Kelly Brown is an IT professional and assistant professor of practice for the UO Applied Information Management Master’s Degree Program. He writes about IT and business topics that keep him up at night.

Print Friendly

Nurturing the Seeds of Innovation

I have been preparing to teach the summer AIM Program course on creating business solutions and have been thinking about the seeds of innovation. Where exactly do these seeds come from and what helps them to germinate? What forces stifle them, preventing them from growing and maturing? We will explore all of these points in the course and this post reveals some of my thoughts on the early stages of the innovation process.

Nature vs. Nurture

Ideas can come from many places but I have found they sprout from well-cultivated soil. Nineteenth century chemist Louis Pasteur said, “chance favors only the prepared mind.” Innovation may seem to spring up in unexpected ways and in unique places but it comes as a result of preparation, observation, and hard work. It comes from days, months, or even years of thinking, pondering, and studying a problem.

Are innovators born or made? A 1973 study of fraternal and identical twins showed that while there is some genetic predisposition toward creativity, most of it is learned. That is good news for people who don’t think they are natural innovators.

Creative Ecosystem

How does an organization foster creativity and innovation? How do they build an ecosystem that allows and encourages everyone to think beyond the immediate issues? Companies such as 3M and Google allow employees time to explore ideas outside the scope of their job. But it takes more than time to foster creativity, it takes an atmosphere or ecosystem that encourages experimentation and allows failures. Thomas Edison is purported to have said, “I have not failed, I’ve just found 10,000 ways that won’t work.” It is not easy for an organization to allow time and effort for “ways that won’t work” but this is part of the preparation necessary for that big breakthrough idea.

Barriers to Creativity

We often place barriers to innovation and creativity. These may come in the form of hardened ideas about “how we do things around here” or inflexible rules and regulations. Examples of companies fighting barriers are Tesla and Uber. In March 2014, New Jersey, among other states, banned direct sales of Tesla automobiles in the state because they did not comply with the decades old “dealership” model. Tesla traditionally sells cars directly through small storefronts and not through the conventional dealer and service center model. New Jersey reversed that ban a year later. Uber faces similar barriers. Traditionally, taxi companies are highly regulated and limited by municipalities. Drivers work for a taxi company that pays franchise fees to the city. Uber drivers are not full-time employees, they are only contractors, so the whole regulation and fee structure begins to fall apart. Several cities initially banned Uber from operating in their area because its business model did not conform to the traditional standard. Tradition can often be the greatest enemy of innovation.

Thoughts

To those who will join me in the business solutions course this summer, I look forward to an exchange of ideas on ways to promote and stimulate innovation for individuals and organizations. With proper preparation and dismantling of barriers, creativity can flourish and can lead to invention and new revenue sources. Let me know your thoughts.

Author Kelly BrownAbout Kelly Brown

Kelly Brown is an IT professional and assistant professor of practice for the UO Applied Information Management Master’s Degree Program. He writes about IT and business topics that keep him up at night.

Print Friendly

Preventing Crime Using Predictive Analytics

In the 2002 futuristic movie “Minority Report,” Tom Cruise heads up a police division called PreCrime. This unit uses predictive analysis collected from mutants to arrest the would-be criminal before the crime is committed. The movie is set in 2054 and while I don’t think we have crime fighting mutants among us, we do have computers that make predictive analysis in police work a reality in 2017.

Predictive Analysis

Predictive analysis uses data mining, statistics, computer modeling, and machine learning to predict future events. This can help companies or agencies to better position a product launch or develop a business continuity plan. It can also help them forecast demand for products or services. Retail stores have used this science for years to plan for resources based on a number of factors such as the day of the week, day of the year, weather, and other data points. Dunkin’ Donuts, for example, uses same day sales for the last year as a factor in deciding how many donuts to start on any given day. This helps to reduce waste from too much product and ensures that a customer can always get a French cruller at the end of a busy day.

PredPol

This same predictive analysis is being applied to crime prevention. Predpol is an advanced analytics application that police agencies in California, Maryland, Florida, Georgia, Washington and elsewhere are using. The software collects three historical data points: past type of crime, place of crime, and time of crime.

Through historical analysis, Predpol developers have discovered that there is a pattern to crime and criminals and by mining for those three data points the application can predict where crime is likely to occur in the future. There is no personally identifiable information collected or used so as to prevent biases or profiling. Once the predictive analysis is complete, police assign extra patrols to discourage crime where it is expected. Police report this application does indeed help reduce crime in their jurisdictions. This is a case of advanced analytics being used for positive results in communities.

Counterpoint

To be fair, the output is only as good as the data entered. Information analysts often refer to this as “garbage in, garbage out.” Software such as Predpol and other applications rely on clean, accurate data to predict future hotspots. In a recent blog post from the Council On Foreign Relations, the authors argue that not all crimes are reported so these tools are limited because they start with an incomplete data set, which results in inaccurate or limited information about future crimes. Police go back to the areas where crimes were reported but miss other obvious opportunities because they lack a full data picture. It is important to factor in other data points in order to understand the full picture.

Thoughts

There will most likely be some pushback from people concerned about profiling of a particular neighborhood or audience, but with reasonably clean and unbiased data collection tools such as these can aid law enforcement agencies in fighting crime and creating safer communities.

Do you have other examples of data analytics that is helping to solve real world problems? Let me know your thoughts.

Author Kelly BrownAbout Kelly Brown

Kelly Brown is an IT professional and assistant professor of practice for the UO Applied Information Management Master’s Degree Program. He writes about IT and business topics that keep him up at night.

Print Friendly

STEAM: Adding Arts to STEM Education

I have written in the past about Science, Technology, Engineering, and Math (STEM) education for young people. I am a big advocate of STEM learning and participate in events when possible. I think it is important for everyone to be grounded in the sciences and math to be able to work in our increasingly complex world. It is nice to know how to use an app or a particular software but it is even better to know how it works, especially when it mysteriously fails and you need to try to fix it.

Lately, I have been seeing the term STEAM, which stands for Science, Technology, Engineering, Arts, and Math. In other words, arts inserted into STEM. To be honest, I was skeptical when I first started seeing this term because it felt like the arts were jumping on a bandwagon they were not supposed to be part of. In this post I will explore the origins of STEM and how we got from STEM to STEAM and the value of adding arts education.

Origins of STEM

The Russian satellite Sputnik launch in 1957 started a rivalry with America for technical superiority on earth and in space. America thought that it should be first in terms of smart scientists and mathematicians. The U.S. developed plans to place a man on the moon and in July, 1969, realized that vision and regained superiority in the space race. Growing up in the 1960s, we all wanted to be astronauts and we studied the necessary disciplines to get us into space. Science and math were fundamental. Computer development in the ‘80s and ‘90s kept technical subjects in the forefront. Programming, math, and electronics were important and exciting.

The National Science Foundation coined the term STEM in 2001 to refer to a renewed emphasis in teaching technical disciplines. Surveys showed that American education was slipping compared to other countries and we were losing that superiority we fought so hard to gain in the 1960s. STEM renewed the emphasis on science education in order to stay on top.

STEM to STEAM

The Rhode Island School of Design championed the term STEAM in an attempt to include art and design with the traditional STEM subjects. They are working to promote this transition with educational institutions around the country. A recent article in the Tech Edvocate did a good job of advocating for this move. Traditional STEM subjects are analytical or left-brained by nature whereas art and design and creativity and spatial awareness all come from the right hemisphere of the brain. In order to create a holistic or whole brained approach to teaching STEM subjects, we need to call on our powers of analysis and visualization. This makes sense to me. A recent conversation with school-age youth brought up the same points. Instead of arts trying to tag along with STEM, this is a way to actively incorporate other methods of learning into technical subjects.

Thoughts

If we are deliberate and thoughtful about adding art, design, and visualization exercises into traditional STEM curriculum, then I think it can be a plus for the student. It will help them navigate both hemispheres of the brain in order to turn out a more creative product. What are your thoughts? Is STEAM a good idea or will it detract from the STEM emphasis.

Author Kelly BrownAbout Kelly Brown

Kelly Brown is an IT professional and assistant professor of practice for the UO Applied Information Management Master’s Degree Program. He writes about IT and business topics that keep him up at night.

Print Friendly